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Abstract. Process discovery studies ways to construct process models from event
logs of historical executions of a system. While discovered models aim to de-
scribe the system, process model forecasting aims to construct models that faith-
fully describe the executions the system will perform in a given period in the
future, informing timely system improvements. Existing approaches tackle the
problem of process model forecasting by decomposing it into multiple univari-
ate time series forecasting problems. They forecast each directly-follows con-
straint over a pair of process activities separately and then aggregate these in-
dividual forecasts into the resulting process model. In this paper, we propose a
deep learning-based approach that leverages multivariate time series forecasting
to solve the process model forecasting problem. Our method learns dependencies
across all activity constraints simultaneously, generating an integrated forecast
of the entire model at once. Through evaluation over industrial event logs, we
demonstrate that this approach significantly outperforms existing baselines and
statistical multivariate methods in accuracy. Additionally, we introduce a new
measure to evaluate the structural correctness of the forecasted models. In the
context of information systems engineering, our work addresses the challenge of
predicting process models to support future process planning and optimization.
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1 Introduction

Business Process Management (BPM) is a key area within information systems engi-
neering, focusing on the design, execution, and optimization of business processes to
improve organizational efficiency and effectiveness [28]]. Process mining is a subarea in
BPM that studies ways to use event logs recorded by information systems to understand
and improve these systems [25]. An event log is a collection of traces, each recorded
as a sequence of executed activities by a system, for instance, during an execution of a
business process. Within the process mining discipline, process discovery addresses the
problem of constructing a process model from an event log of a system that describes
the executions the system can support, where a process model is a conceptual model
composed of activities, routing decisions, and control flow that captures the ordering
constraints over the activities and decisions. A directly-follows graph (DFG) is a pro-
cess model often constructed by process discovery algorithms. It is a directed graph
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with nodes capturing activities, directed arcs specifying possible orders in which the
activities can be executed, and numbers on nodes and arcs suggesting the frequencies
with which the corresponding concepts can be executed. DFGs are discovered by most
of the commercial process mining tools [26]].

Recently, the problem of process model forecasting has been introduced [21]]. Given
an event log of a system and a time interval in the future, process model forecasting
studies ways to construct a process model that describes the executions the system will
perform in the given time interval [29]]. Such a forecast, if accurate, can enhance organi-
zations’ understanding of their future business processes, allowing targeted planning for
redesign and support initiatives. The state-of-the-art technique for process model fore-
casting tackles this problem by dividing it into multiple univariate time series forecast-
ing sub-problems, one for each directly-follows (DF) constraint (an arc in a DFG), solv-
ing these sub-problems, and aggregating the results into the final forecasted DFG [8]].

In this paper, we present a Deep Learning (DL) approach —DeePMF for process
model forecasting that leverages multivariate time series forecasting. Instead of fore-
casting each DF constraint separately, DeePMF learns dependencies across all con-
straints simultaneously and then generates the forecasted process model at once. We
demonstrate that this approach significantly outperforms existing baselines and statisti-
cal multivariate time series methods in accuracy. We also introduced a new measure of
structural correctness of forecasted models and confirm that DeePMF constructs mod-
els of good structural characteristics.

Specifically, this paper makes these contributions:

1. A sparsity test for event logs that helps determine if an event log could be used to
forecast accurate process models;

2. A measure of the level of consistency of a DFG that quantifies by how much the
sum of incoming and outgoing arc frequencies differs for its activity nodes;

3. The DeePMF approach to process model forecasting grounded in DL multivari-
ate time series forecasting techniques that delivers the state-of-the-art forecasting
accuracy across multiple real-life datasets;

4. A comprehensive evaluation of DeePMF over a wide range of industrial event logs
that confirms the effectiveness of our approach, suggesting that the transformer
architecture often leads to better forecasts.

The next section discusses related work. Section 3| provides the concepts and back-
ground knowledge that supports the understanding of the subsequent sections. Section 4]
presents our process model forecasting approach, while Section [5] presents evaluation
setup and results. Section 6] discusses limitations and ideas for future work before Sec-
tion [7] draws final conclusions.

2 Related Work

Predictive Process Monitoring (PPM) studies ways to predict future states, outcomes,
and key performance indicators of business processes based on data from event logs [10].
PPM techniques learn historical patterns and then extrapolate the learned principles be-
yond a given event log. As part of the next process state prediction, PPM techniques can
predict the next activity, or groups of activities, that will be performed in a given incom-
plete business process execution. Existing techniques that tackle this problem achieve
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high prediction accuracy using conventional statistical and process analysis [[18} 24, 27]],
and DL [[11}[12}[15 23] methods. Rather than predicting aspects of a currently running
business process, process model forecasting (PMF) aims to construct a model that de-
scribes future executions from a requested period [29]. This fundamental difference
between PPM and PMF makes the artifacts they produce not directly comparable.

Our process model forecasting work is inspired by the work by De Smedt et al. [7]].
They compared the effectiveness of the statistical time series forecasting techniques for
forecasting DF constraints. The forecasting technique proceeds by splitting the event
log into equitemporal or equisized periods, calculating frequencies of observed DF
constraints for each period, and forecasting each DF constraint using univariate time
series forecasting for the series of its frequencies stemming from the different peri-
ods of the event log. They evaluated five statistical time series forecasting techniques,
namely naive average (Naive), auto-regressive integrated moving average (ARIMA)
with the order of (2, 1,2), auto-regressive (AR) with the order of (2), Holt-Winters’
model (HW), and generalized auto-regressive conditional heteroskedasticity (GARCH).
They then evaluated the mean percentage error in terms of entropic relevance [2] be-
tween the ground truth future DFGs and the DFGs assembled from the forecasted con-
straints. In a follow-up work, they evaluate the vectorized auto-regressive (VAR) model
with the order of (1) [8]. In our work, we forecast all DF constraints, and thus the DFG
that describes the requested future executions, at once using multivariate time series
forecasting and demonstrate that this approach leads to forecasted DFGs of superior
accuracy. De Smedt et al. [8] report that techniques that perform the best on average are
HW, AR, and the naive average, while VAR performs worse than other techniques ex-
cept for one dataset. In our experiments, we replicated ARIMA with the working order
of (1,1, 1), AR with the order of (2), Naive, and HW as univariate baselines, included
VAR with the order of (1) as a multivariate baseline, and further introduced identity
function (Identity) as another baseline.

While our techniques demonstrate improved forecasting of DF constraints, their
interpretability is an ongoing research. van der Aalst [26] highlights potential incon-
sistencies that can arise after filtering DFGs, leading to misinterpretations by analysts.
Leemans et al. [19] adapts and discusses the soundness property for DFGs, aiming to
ensure their correctness. We propose consistency as a new measure of DFGs correctness
that evaluates how well the forecasted DF constraints align with human interpretability,
focusing on the balanced in-flow and out-flow of arc frequencies across nodes.

3 Preliminaries

This section introduces notions used in the discussions in the subsequent sections.

An event is a collection of attribute-value pairs comprising at least three elements
storing values of case ID, activity, and timestamp attributes [25]]. The case ID, activity,
and timestamp attributes of an event specify the instance, or case, identifier of the busi-
ness process that triggered the event, the activity that triggered the event, and the times-
tamp at which the event was recorded. An event log, or a log, is a collection of events
recorded during the execution of multiple instances, or cases, of a business process. An
example event log L is shown in Table[T] where each row specifies one event with the
attribute values specified in the corresponding columns. The activities that triggered all
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Case ID‘Activil‘y‘ Timestamp N
e | w3000
1 a
A I B /@3 01110
1 b 3 ] 1
2 b 4 @ c|l0000 1
2 b 5 J / di00001
2 d 6 E §$120000
1 c 7
Table 1: Event log L. Fig. 1: DFG of L. Fig.2: DFM of L.

the events with the same case identifier ordered by the timestamps of the corresponding
events constitute a trace. Event log L contains two traces: (a,b,c) and {a, b, b,d).

A Directly-Follows Graph (DFG) is a process model often constructed from an
event log to describe the process that generated the event log [26]. A DFG is also a
weighted directed graph with two special nodes denoting the start and end of the pro-
cess and other nodes annotated with activities. The arcs of a DFG are defined by the
DF constraints in the event log, which comprise all pairs of consecutively followed ac-
tivities in the traces of the event log. For instance, the DF constraints of event log L
are defined by the set {(S,a),(a,b),(b,b),(b,c),(b,d),(c,E),(d,E)}. The start node has
no incoming arcs, while the end node has no outgoing arcs. The outgoing arcs of the
start node target nodes that represent activities that appear at the start of the traces. The
incoming arcs of the end node originate from nodes that represent activities that appear
at the end of the traces. In addition, arcs of a DFG are annotated with weights that re-
flect the frequencies with which the corresponding DF constraints, that is, subsequent
executions of the activities, appear in the traces. For instance, the arc (S,a) has a weight
of two, as both traces in the event log start with activity a, while arc (a,b) has a weight
of two because activity b follows immediately activity a two times in the traces of L.
Figure|l|shows the DFG constructed from the traces of event log L.

A Directly-Follows Matrix (DFM) is an adjacency matrix used to provide an alter-
native representation of a DFG. In a DFM, rows represent all the DFG nodes except the
end node, while columns represent all the DFG nodes except the start node. Each entry
in the matrix specifies the weight of the DFG arc from the corresponding row’s node to
the corresponding column’s node. As the start node has no incoming arcs and the end
node has no outgoing arcs, the corresponding column and row are omitted in the DFM.
The DFM in Figure[2]is an alternative representation of the DFG in Figure[T]

Time Series Forecasting (TSF) studies techniques to predict future values of the time
series given the historical data [6]]. A time series is a series of discrete data measure-
ments often ordered in regular time intervals. A univariate TSF uses a single time series
data to perform forecasts, while a multivariate TSF analyses the dependencies between
multiple time series to generate future values in these series simultaneously. Some es-
tablished statistical univariate TSF approaches include AR and ARIMA. Popular multi-
variate TSF techniques include VAR and Vectorized ARIMA (VARIMA) [14} 20, 22]].
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4 Approach

This section presents the problem of process model forecasting, describes our data se-
lection principle that aims to ensure accurate forecasting, summarizes our forecasting
approach, and presents the way we evaluate the results of our forecasts.

4.1 Problem Definition

Let £ be the universe of event logs, let 7~ be the universe of timestamps, and let M be
the universe of process models. By P = {(s,e) € T X7 | e > s} we denote the universe
of time periods, where period (s, e) starts at timestamp s and completes at timestamp e.

Given an event log L € L and a period P € P in the future relevant to L, the process
model forecasting problem consists in constructing a process model that describes the
executions the system that generated L will perform during period P. That is, a solution
to process model forecasting can be given as a function f : £ X P — M, such that
for each (L, (s,e)) € f it holds that latest(L) < s; by latest(L), we refer to the latest
timestamp in L, that is, the maximum timestamp value among timestamps of all the
events in L. This is different from the classical process discovery problem studied in
process mining that aims to construct a process model that describes all the executions
of the system that generated the event log can perform in the period (—oco, +c0). In this
work, we use process discovery outputs (process models) as inputs to forecasting, and
thus the quality of the discovery algorithm is crucial to the success of forecasting.

In this work, we study a restricted version of the process model forecasting problem
f that aims to construct models that describe executions the system will perform in
periods immediately after the latest timestamp in the event log, that is, f : LxP — M,
such that for each (L, (s, e)) € f it holds that latest(L) = s.

4.2 Data Selection

It is unrealistic to assume that every event log can support accurate process model fore-
casting. Event logs may suffer from issues such as insufficient data, poor quality, incon-
sistency, or sparsity. For example, forecasts based on empty or minimal logs are likely
no better than random guesses. In contrast, large event logs collected over extended
periods are more likely to capture critical process features—such as trends, recurring
irregularities, and seasonality—thus enabling more reliable and meaningful forecasting.

Over the past two years of iterative experimentation and refinement, guided by the
design science methodology, we developed the following three criteria for event logs.
These criteria are designed to balance the simplicity of imposed requirements with their
strong relationship to forecasting accuracy.

1. Correctness. An event log must conform to the designated format (e.g., XES).

2. Completeness. Every event in an event log must have valid values for three manda-
tory attributes: case ID, activity, and timestamp.

3. Density. An event log should include a sufficient number of occurrences for events
representing different activities across its duration.

We operationalize the correctness and completeness checks for event logs using the
Disco tool [13]]. Specifically, we check if there are no errors or warnings reported when
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Algorithm 1: SparsityTest
Input: M — a non-empty list M of DFMs, each of size n X n, n € N; it — individual
matrix sparsity threshold; ¢ — total sparsity threshold
Output: Result of the sparsity test for DFMs M

1 passed « false; /* initialize test result to false */
2 count « 0; /* number of sparse DFMs */
3 forke[l.. |[M|]do /* for each position k in M */
4 sparsity « Zi_y Zj_y IMKij)[y2; /* share of zero entries in M(k) */
5 value « Zi=; Zj-; MKyijfn2; /* average value in M(k) */
6 if sparsity > it A value < it then /* if M(k) is sparse ... */
7 L count < count + 1; /* ... then increment count */
8 if count/p < tt then /* if share of sparse DFMs below threshold ... */
9 L passed « true; /* ... then test passed */
10 return passed; /* return test result */

loading an event log in Disco. To ensure validity, the values of the mandatory event
attributes were examined manually. To check the data is sufficient to yield meaning-
ful forecasts, we designed a sparsity test described in Algorithm [I] This test evalu-
ates whether the chosen time window is coarse enough to minimize empty time series
DFMs, thereby ensuring the forecasts remain both meaningful and necessary.

In the algorithm, I(.) is the indicator function, such that I(x = 0) = 1; otherwise
I(x) = 0. Also, if M is a sequence, then M(i) is the element at position i in M. The
algorithm takes a list of DFMs as input. A time window, or a lag, represents a period
of time. We assume that the duration of an event log (the period between the earliest
and the latest timestamps of all its events) is split into a number of consecutive time
windows, denoted by #lag, each of the same duration. Given an event log and a lag size,
we compute a sequence of DFMs, one DFM for each time window, in which DFMs are
ordered according to the order of the corresponding time windows. This procedure is
sketched in Figure [3] for a sample event log and #lag = 3; each day defines a time
window. The obtained sequence of DFMs is then subject to the sparsity test. The test
checks if the number of sparse DFMs in the input sequence is below the total sparsity
threshold (##). A DFM is defined as sparse if the share of its entries that are zeros is
above the individual matrix sparsity threshold (if) and the average entry in the DFM
is below this threshold. Empirically, we established that DFM sequences that pass the
sparsity test for thresholds ir = 0.98 and 7 = 0.2 lead to meaningful forecasts.

4.3 Forecasting
We follow a similar approach to process model forecasting as De Smedt et al. [7]. An
event log is prepared for training a process forecasting model in the same way as during
data selection. Referring to the example in Figure [3| the event log lasts for three days,
and to simplify the example, to split the event log, we use #lag = 3. Hence, each lag
contains all the events recorded on a particular day. We then use PM4Py [4]] to discover
DFGs from (fragments of) traces from each lag and represent these DFGs as DFMs.
We use DFM sequences to train DL multivariate time series forecasting models. We
identified six DL models used in time series forecasting that can be trained on DFM
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Event log DFM of time window 1

Case ID ‘Activity‘ Timestamp

1 a  |2024/08/09 10:42
2 a  [2024/08/09 10:44 / DFM of time window 2
3 a  |2024/08/09 10:45

1 b [2024/08/09 10:45

3 b [2024/08/09 10:46

1 ¢ |2024/08/10 10:46 DFM of time window 3

2 b [2024/08/10 09:47

2 ¢ |2024/08/10 09:55

4 a

4 c

2024/08/11 10:40 } .
2024/08/11 10:41

Fig. 3: Event log prepared as DFM time series (#lag = 3).

sequences: Vanilla, Convolutional Neural Network (CNN), Recurrent Neural Network
(RNN), Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and trans-
former [16}[17]. The Vanilla model is a fully connected deep neural network (NN) with
a sequence of two linear layers, each followed by a ReL.U activation function, and it is
concluded with an additional linear layer as the output layer, providing the final pre-
dictions without an activation function. The CNN model is similar to the Vanilla model
and differs in that it uses 1D convolutional layers instead of linear layers, while it still
encompasses an additional linear layer as the output layer. The RNN model is an Elman
RNN architecture with two RNN layers and a final linear output layer. The GRU and
LSTM models use the same architecture as the RNN model. The transformer model is
the default PyTorch transformer model without any additional layers.

To ensure that the comparison between NN models and baselines is fair, in this
work, we fixed all models’ (both NN models and statistical models) horizon (#horizon)
and look-back window (#lookback) to be equal to one; the same configuration was used
by De Smedt et al. [8]]. In time series forecasting, a horizon is the number of time
windows the method forecasts, while a look-back window defines how many previous
time windows are used by the forecasting model to come up with a forecast.

4.4 Testing
We further describe how we split the data into 10 folds to perform a 10-fold cross-
validation of our forecasting approach. After constructing the series of DFMs over time,
Full list of time-ordered DFMs
| Chunk 1 | Chunk 2 | Chunk 3 | Chunk 4 | Chunk 5 [ Chunk 6 | Chunk 7 | Chunk 8 | Chunk 9 [Chunk 10]

Fold 1| Chunk 1 I Chunk 1 Chunk 2 | | =t Testing DFM
Fold 2|| Chunk 1 | Chunk 2 i i
Fold 3 | Chunk 1 | Chunk 2 | Chunk 3 ‘ Training DFMs Validation DFM

Fold 10 ‘ Chunk 1 ‘ Chunk 2 ‘ Chunk 3 ‘ Chunk 4 ‘ Chunk 5 ‘ Chunk 6 ‘ Chunk 7 ‘ Chunk 8 ‘ Chunk 9 ‘Chunk 10‘

Fig. 4: Time series splitting and data used for training, validation, and testing.
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we use these matrices as inputs to train the selected NN models, as well as the baseline
models. We first split the ordered time windows from the earliest to the latest into 10
equal chunks. Then, to construct the i-th fold, we take all the DFMs starting from the
first DFM in the entire series of DFMs up to and including all the DFMs from the i-th
chunk; this is a standard approach for splitting time series data for cross-fold validation.
Figure @] visualizes this splitting process. Since the forecasting horizon we use is set to
one, we use the last DFM in each fold as the testing ground truth, and we set the DFM
before the testing DFM as our validation DFM. All the other DFMs are used to train the
forecasting NN models. Specifically, for each fold, we train the NN models from scratch
and use Optuna [1] to report on the hyperparameter combinations that have the lowest
loss on the validation DFM. Since Optuna does not keep the model state, we retrain the
model using the reported best hyperparameters after 50 trials of hyperparameter search.

To further improve the accuracy of our forecasts, we also experimented with two
approaches: modifying every model architecture by adding a ReLU layer at the end of
each model (the transformer model also introduced an additional linear layer for apply-
ing the ReL.U activation) and post-processing the prediction by taking the maximum
frequency between zero and the predicted values.

5 Evaluation

This section presents the datasets used in our evaluation, our implementation of the
approach and experimental setup, quality measure used to assess the performance of our
process model forecasting techniques, and reports the results of the conducted forecasts.

5.1 Datasets

We explained our data selection steps and criteria in Section [4.2] and applied them to
all event logs made publicly available by the IEEE Task Force on Process Minindﬂ To
increase the number of event logs suitable for analysis, we also manually truncated and
filtered some logs that have a long idle period at the beginning or the end of the logging
period. We use ‘_f’ to indicate that the log has been truncated and filtered; for the events
belonging to the cases outside the included period, we removed those events. During
the data preparation stage, we read the event logs and retrieved the earliest and latest
timestamps for each dataset. We further sliced the duration of the earliest to the latest
timestamp into a number of equal time windows as described in Section d.3] Then, for
the events in each period, we use PM4Py [4] with default settings to discover the DFG
of that period, and we further turn these DFGs into equivalent DFMs. The obtained
lists of DFMs were used as inputs to our sparcity test (Algorithm [T). Ten event logs
passed the test. These are Hospital Billing (hb), Road Traffic Fine Management Process
(rtfmp), Sepsis Cases (sepsis), BPI Challenge 2017 (bpic17), the help desk log of an
Italian company (helpdesk), BPI Challenge 2019 (bpic19), BPI Challenge 2013 Closed
Problems (bpic13c), BPI Challenge 2012 (bpic12), NASA Crew Exploration Vehicle
Software Event Log (nasacs), and BPI Challenge 2013 Open Problems (bpic130) event
logs. The characteristics of these event logs are summarized in Table [2] Note that not
every event log passes the sparsity test for all chosen lag sizes.

!https://www.tf-pm.org/resources/logs
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Table 2: Event logs and their characteristics.

Log name Events ‘ Traces ‘ Activities ‘ Earliest timestamp ‘ Latest timestamp

hb 451,359 | 100,000 18 | 2012-12-13 20:13:18 | 2016-01-19 18:58:56
rtfmp 561,470 | 150,370 11 | 2000-01-01 10:00:00 | 2013-06-18 08:00:00
sepsis_f 14,766 1,025 16 | 2013-11-07 18:18:29 | 2015-02-28 04:00:00
bpicl7 1,160,405 | 31,509 26 | 2016-01-01 20:51:15 | 2017-02-02 01:11:03
helpdesk 21,348 4,580 14 | 2010-01-13 08:40:25 | 2014-01-03 13:20:58
sepsis 15,214 1,050 16 | 2013-11-07 18:18:29 | 2015-06-05 20:25:11
bpic19_f | 1,588,420 | 251,478 11,879 | 2018-01-01 09:59:00 | 2019-01-19 00:34:00
bpicl3c_f 6,483 1,456 7 | 2010-01-06 02:42:20 | 2012-06-01 07:49:06
bpic12 262,200 13,087 36 | 2011-10-01 08:38:45 | 2012-03-15 02:04:55
nasacs 36,819 2,566 47 | 2017-02-14 01:50:52 | 2017-02-14 01:50:56
bpicl3o_f 2,319 812 5 | 2010-01-14 20:34:54 | 2012-06-15 20:19:56

5.2 Implementation and Experimental Setup

We split each event log into different numbers of time windows. Specifically, we use
#lag of 100, 300, 500, 700, and 1,000. All the experiments were conducted on the
University of Melbourne supercomputing platform—Spartan. Our experiments were
implemented in Python 3.9.19. We configured the Pytorch DL framework in the Ana-
conda3 (2022.10) environment with CUDA (12.2.0). Table [3| summarizes the platform
specification as well as other Python packages and version information.

We used Optuna [[1] as a hyperparameter tuning tool. The hyperparameter values we
used are listed in Table 3] We fix the other parameters including the number of layers,
batch size, and kernel size (for the CNN model) to two, one, and one, respectively.
For each NN model, we set Optuna to try 50 trials for each fold, and we picked the
hyperparameters that returned the lowest loss on the validation dataset for training the
final NN model. For each dataset, the NN models were optimized for 10 folds. The
implementation of our experiments, including the data preparation, training, evaluation
and result analysis, is publicly availableE]

Table 3: Platforms, packages and hyperparameters.
Processor: Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz.
Memory: 1,000GB (only utilised 16GB in our experiments).
GPU memory: 80GB GPU RAM per GPU.

torchaudio: 2.4.0

Cores: 32.
GPU type: A100.

‘torchvision: 0.19.0|pm4py: 2.7.11.13 [scikit-learn: 1.5.1|optuna: 3.6.1

torch: 2.1.0.dev20230621+cull7 numpy: 1.26.4  |pandas: 2.2.2 scipy: 1.13.1
Optimizer Adam, SGD

Loss function L1Loss, MSELoss, SmoothL.1Loss

Hidden size 121, 196, 256, 324, 1296

Epochs 1000 to 2000

Learning rate 0.001 to 0.01

Dropout probability|0.1 to 0.3

2 https://github.com/zhoudayun8 1/DeePMF
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5.3 Quality Measures

To evaluate the accuracy of our forecasts, we rely on the commonly used mean absolute
error (MAE) measure. Specifically, we measure the errors of the entries in the forecasted
DFM (Forecasted_DFM) with respect to the corresponding entries in the ground truth
DFM (Ground_Truth_DFM). We calculate MAE for each fold and average the mean
performance of each NN model for the 10 folds for each dataset.

Below, we detail the computation of MAE for an event log with n unique activities:

Ground_Truth_DFM € N'"™"

Forecasted DFM € 7/™"

1 n+l n+l
Z Z |Gr0und_Truth_DFM ij — Forecasted_DFM;;

i=1 j=1

MAE

BCTSIE

We propose a consistency measure of DFG quality that quantifies how well the sum
of the frequencies of the arcs entering and leaving its activity nodes match. For the start
node, which only has outgoing arcs, the frequency should be the same as the frequency
of arcs entering the end node. We require that a DFG has at least one arc. If a DFG has
exactly one arc, this is the arc from its start node to its end node.

We compute consistency of a DFG with n activity nodes over its DFM as follows.

n+l
row_sum; = Z max(DFM;,0) (outgoing sum for node i) (Eq- D
=1
n+1
column_sum; = Z max(DFM;;,0) (incoming sum for node i) (Eq. 2)

=1

min(row_sum;, column_sum;) (Eq. 3)
q-

1 n+l
Consistency = Z
n+1 p max(row_sum;, column_sum;)

Firstly, we calculate the sum of outgoing (Eq. I)) and incoming (Eq. 2) arcs for each
node i of the DFG. As a forecasted DFM can, in general, contain negative entries, if a
negative value is encountered when computing the sum for a row or column, it is re-
placed with the value of zero. If the outgoing, as well as the incoming arcs’ frequencies,
sum up to zeros, to avoid the division by zero problem, the ratio for the node in[Eq. 3]
is accepted to be equal to one. In the DFG, this is interpreted as the node does not exist
in the graph. Consequently, it holds that consistency is a value between zero and one,
with larger values signifying a higher degree of consistency.

There are several design options to evaluate the quality of the DFG. The reason for
our choice of this measure is twofold. First, the measurement is bounded between zero
and one. Second, the measurement values can be compared between different datasets.
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Fig. 5: Percentage improvement of MAE after applying normalization.

Percentage Improvement (\%)

5.4 Results

Due to the page limit, we could not fully present the large-scale experiments conducted
and the extensive data collected. The interested reader can access the complete experi-
mental outputs and results in our GitHub repository, specifically in the output and result
folders. Several statistical models we explored assume stationarity in the data, a require-
ment that the majority of the training DFMs do not meet. As a result, some models failed
to converge during training. Consequently, we only report results for ARIMA with
a modified order (1,1, 1), AR(2), HW, VAR(1), naive average (Naive), and the iden-
tity function (Identity). Although we attempted to apply a vectorized ARIMA model
(VARIMA), none of the tested orders worked with our datasets.

In Table @} we report on the mean MAE for each model over 10 folds for each
dataset; the number of time windows used to split the dataset is annotated in the brackets
next to the dataset name and we bold the best (lowest) values for each dataset. Table E|
provides several insights. First, transformer (Trans) has a superior lower MAE on the
majority of the datasets comparing to the baselines, which are mostly more than 50%
improvement in MAE comparing to the multivariate baseline VAR. Second, transformer
almost consistently performs not good on hb and bpicl7 datasets. Third, VAR model
yields most of the poorest results and cannot even compete with the simple baselines
(Identity and Naive), hence we do not recommend using VAR for multivariate time
series process model forecasting. Finally, when the lag size is small (e.g., #lag = 100),
the NN models have less advantage to win over the identity function. The reported
results are the best after post-processing the predictions as described in Section[d.3] The
percentage improvement of each model after post-processing is described in Figure[5] It
is clear that RNN benefits the most from this improvement, which also is an indication
that the original RNN model quality can be poor. As we also explored adding a ReLU
layer to ensure all the values in the forecasted DFM are positive, it is surprising that this
approach deteriorates the forecasting accuracy.

To further analyze the impact of the lag on the forecasting results, we also plot the
average rankings for all datasets in different lag groups in Figure [§] Figure [6] implies
that with the greater number of time windows used for training, the transformer model
has better performance, while the univariate baselines, as well as the identity function,
lose their advantage with finer time windows. This makes sense and aligns with the
results in Table [ where the majority of the best results in the baselines are from the
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Table 4: Average MAE of All Models (rounded to 3rd place decimal).

‘ DeePMF ‘ Baselines
Dataset | Trans RNN LSTM GRU CNN Vanilla|ldentity Naive ~— VAR ARIMA HW AR
hb(100) 5344 4996 4.153 425315712 5788| 3.164 7.584 10.653 3.188 3.062 3.357

rtfmp(100) 47.098 48.581 49.565 53.098 63.303 103.747| 73.357 53.288 280.804 54.324 54.276 54.459
sepsis_f(100) | 0.274 0.304 0.362 0.305 0.309 0.328| 0.387 0.325 0.560 0.336 0.328 0.338
bpic17(100) 4907 4.780 4.485 4.59410.126 6.075| 7.219 6.521 8.414 4.331 5.188 4.836
helpdesk(100) | 0.683 0.656 0.568 0.612 0.564 0.656| 0.546 0.784 1.828 0.630 0.613 0.588
sepsis(100) 0.297 0.326 0.376 0.352 0.311 0.316] 0.359 0.439 0.503 0.335 0.326 0.382
bpic19_f(100) | 6.077 5.733 6.383 6.328 11.569 10.606| 8.761 6.761  12.835 6.265 6.615 5.952
bpic13c_f(100)| 0.602 0.761 0.809 0.744 0.755 0.777| 0.711 1.272 0.941 0.731 0.714 0.730
bpic12(100) 1.432 1.265 1.243 1.420 1.591 1.434| 1.511 1.245 2200 1.225 1.193 1.200
nasacs(100) 0.121 0.137 0.134 0.127 0.141 0.135| 0.120 0.147 0.232  0.125 0.122 0.135
bpic130_f(100)| 0.642 0.656 0.664 0.658 1.144 0.847| 0.894 1.289 1.041 0.651 0.689 0.770
hb(300) 2.010 1.651 1.580 1.650 1.673 1.683| 1.557 2.944 4237 1379 1.358 1.433
rtfmp(300) 15.475 16.617 17.296 16.835 17.656 18.049| 24.146 20.801 136.940 18.565 17.549 18.054
sepsis_f(300) | 0.102 0.161 0.169 0.172 0.173 0.161| 0.189 0.165 0.421 0.178 0.174 0.185
bpic17(300) 2322 2.605 2817 2.627 2756 2.767| 3.397 2.857 95430 2368 2292 2.617
helpdesk(300) | 0.169 0.312 0.318 0.328 0.262 0.324| 0.316 0.339 0.395 0.301 0.297 0.305
sepsis(300) 0.107 0.160 0.157 0.158 0.145 0.145| 0.178 0.186 0.385 0.164 0.163 0.188
bpic19_f(300) | 3.993 3.535 3.932 3.590 4.277 4.453| 4913 3.957 1,440.695 3.907 3.994 3.990
bpic13c_f(300)| 0.172 0.464 0.352 0.394 0.469 0.452| 0.650 0.405 0.564 0.422 0.440 0.380
bpic12(300) 0.454 0.546 0.482 0.499 0.563 0.565| 0.665 0.573 5.596 0.538 0.548 0.520
hb(500) 1.267 1.221 1.110 1.097 1.901 0.925| 1.060 1.983 9.989 0.820 0.824 0.938
rtfmp(500) 8.583 10.252 9.751 10.678 10.367 12.209| 17.915 14.020  13.468 11.927 11.387 11.758
sepsis_f(500) | 0.057 0.110 0.123 0.111 0.101 0.120{ 0.127 0.115 0.256 0.129 0.127 0.132
bpic17(500) 1.745 1928 1.836 1.929 2309 2215/ 1.958 2439 54.097 1.831 2.031 2.090
helpdesk(500) | 0.095 0.221 0.186 0.240 0.177 0.269| 0.235 0.238 0.265 0.204 0.198 0.226
sepsis(500) 0.065 0.095 0.105 0.107 0.097 0.112| 0.136 0.117 0.248 0.113 0.113 0.129
hb(700) 0.781 0.764 0.836 0.699 0.907 0.871| 0.978 1.554 1.063 0.802 0.806 0.967
rtfmp(700) 6.852 8246 8.838 8.324 8.624 11.401| 16.510 11.636 9.358 9.844 9.583 9.870
sepsis_f(700) | 0.034 0.082 0.088 0.103 0.091 0.096| 0.108 0.092 0.171 0.102 0.102 0.106
bpic17(700) 1.591 1.631 1492 1.616 1941 1.792| 1.759 2.261 5.785 1.779 2.065 1.943
helpdesk(700) | 0.063 0.164 0.164 0.168 0.184 0.180| 0.200 0.191 0.196 0.169 0.164 0.186
hb(1000) 0.528 0.523 0.708 0.570 0.986 0.633| 0.698 1.092 1.035 0.610 0.605 0.641
rtfmp(1000) 5.458 6.730 8.117 7.832 7.348 7.109| 12.595 9.485 8.221 7.872 8.008 7.680
sepsis_f(1000) | 0.019 0.064 0.075 0.073 0.068 0.073| 0.100 0.072 1.41E+09 0.082 0.083 0.079
bpic17(1000) 1.397 1.442 1.426 1.276 1.664 1916] 1.695 1.798 24706 1.477 1.679 1.617

identity function for smaller lags. This infers that for a greater time span, it may not be
suitable to apply time series techniques for process model forecasting, as the nuances
are usually hidden by emergent global behaviors. Alternatively, a univariate forecasting
model may be sufficient and cost-effective for a smaller lag DFM forecast.

We then ranked the models’ performance, calculated the mean ranking and gener-
ated the critical difference diagram over all the datasets, refer to Figure /] The critical
difference diagram was proposed by Demsar [9]] and further refined by Benavoli et al.
[3]. To compute statistics, we used the default value of alpha of 0.05. Figure [/| shows
that transformer and RNN DL models (Elman RNN, LSTM, GRU) perform substan-
tially better than the simple baselines and statistical models and significantly better than
the VAR model. Although the critical differences between the DeePMF models and
the univariate baselines are blended, the actual ranking difference between transformer
(2.7) and the best baseline ARIMA (5.4) is significant. Looking back at Figures[5|and[7]
despite transformer receiving little improvement, it still ranks first among all models,
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Fig. 7: Critical Difference (CD) diagram for all datasets.
which confirms its superiority in terms of the prediction accuracy and the DFM quality.

To evaluate the quality of the interpretation of the forecasted DFMs, we evaluated
the consistency of the forecasts. The results are summarized in Table [5] We bolded
the best results, underscored the second-best results, and italicized the worst. As Ta-
ble[5] shows, the identity function has the highest average consistency, and ideally, this
score should be exactly one, as every DFM discovered should be perfectly consistent.
However, the DFGs discovered during training based on the bpic17 and nasacs datasets
are not always consistent. Hence, they contribute to the reduction of the mean consis-
tency in the results. The naive average approach has mostly the second-best consistency,
while the VAR model performs overall the worst again. It is interesting to see that most
baselines (except VAR and ARIMA) can achieve better consistency compared to the
DeePMF models. This could imply that there is a trade-off between accuracy and con-
sistency for the forecasted process models.

6 Discussion

The results have demonstrated that DeePMF, mainly based on the transformer architec-
ture, achieves superior accuracy of process model forecasts. The results may be biased
as we did not fully explore all the DL model architectures. For example, we fixed the
kernel size and stride for CNN and the number of layers for all DL models. It would
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Table 5: Mean consistency of process model forecasts.

| DecPMF

Baselines

|Trans RNN LSTM GRU CNN Vanilla|Identity Naive VAR ARIMA HW AR

hb(100) 0.910 0.864 0.915 0.858 0.814 0.860 | 1.000 0.966 0.893 0.918 0.944 0.907
rtfmp(100) 0.876 0.845 0.866 0.854 0.804 0.841 | 1.000 0.982 0.778 0.909 0.896 0.903
sepsis_f(100) ]0.885 0.883 0.926 0.921 0.899 0.916 | 1.000 0.884 0.841 0.903 0.932 0.890
bpicl17(100)  0.944 0.945 0.934 0.947 0.852 0.914 | 0.979 0.970 0.898 0.934 0.957 0.939
helpdesk(100) [0.969 0.937 0.958 0.933 0.925 0.919 | 1.000 0.941 0.879 0.895 0.923 0.930
sepsis(100) 0.910 0.886 0.950 0.941 0.906 0.920 | 1.000 0.872 0.835 0.872 0.926 0.870
bpic19_f(100) [0.898 0.797 0.889 0.852 0.872 0.865 | 1.000 0.961 0.834 0.900 0.933 0.897
bpic13c_£(100)[0.913 0.884 0.900 0.928 0.884 0.949 | 1.000 0.920 0.893 0.790 0.827 0.885
bpicl12(100)  [0.897 0.902 0.912 0.891 0.917 0.898 | 1.000 0.946 0.856 0.950 0.971 0.945
nasacs(100)  |0.747 0.764 0.886 0.846 0.789 0.825 | 0.996 0.704 0.732 0.794 0.780 0.770
bpic130_f(100)]0.902 0.913 0.861 0.858 0.850 0.973 | 1.000 0.882 0.940 0.845 0.892 0.866
hb(300) 0.934 0.819 0.888 0.881 0.907 0.884 | 1.000 0.917 0.813 0.914 0.928 0.915
rtfmp(300) 0.857 0.857 0.874 0.853 0.866 0.828 | 1.000 0.955 0.927 0.922 0.911 0.934
sepsis_f(300) |0.887 0.890 0.911 0.915 0.913 0.921 | 1.000 0.924 0.818 0.916 0.959 0.927
bpic17(300)  |0.918 0.898 0.910 0.898 0.911 0.928 | 0.981 0.964 0.702 0.951 0.942 0.940
helpdesk(300) [0.931 0.909 0.963 0.901 0.939 0.946 | 1.000 0.984 0.911 0.908 0.928 0.959
sepsis(300) 0.941 0.909 0.949 0.921 0.946 0.931 | 1.000 0.916 0.788 0.891 0.928 0.911
bpic19_f(300) [0.879 0.819 0.827 0.845 0.912 0.884 | 1.000 0.954 0.688 0.903 0.950 0.913
bpic13c_£(300)|0.949 0.885 0.860 0.878 0.864 0.896 | 1.000 0.932 0.910 0.779 0.857 0.912
bpic12(300)  [0.903 0.874 0.918 0.906 0.941 0.940 | 1.000 0.936 0.804 0.900 0.967 0.955
hb(500) 0.922 0.837 0.923 0.877 0.933 0.860 | 1.000 0.945 0.880 0.918 0.940 0.920
rtfmp(500) 0.880 0.896 0.904 0.887 0.872 0.836 | 1.000 0.970 0.912 0.945 0.918 0.956
sepsis_f(500) ]0.863 0.870 0.853 0.903 0.876 0.890 | 1.000 0.926 0.840 0.935 0.949 0.933
bpicl17(500)  ]0.915 0.922 0.875 0.906 0.894 0.906 | 0.980 0.966 0.730 0.943 0.940 0.948
helpdesk(500) |0.946 0.967 0.973 0.969 0.943 0.967 | 1.000 0.993 0.939 0.895 0.928 0.956
sepsis(500) 0.912 0.886 0.911 0.940 0.933 0.944 | 1.000 0.919 0.858 0.898 0.926 0.923
hb(700) 0.909 0.822 0.904 0.914 0.927 0.852 | 1.000 0.939 0.819 0.913 0.943 0.917
rtfmp(700) 0.908 0.877 0.908 0.904 0.921 0.836 | 1.000 0.948 0.928 0.949 0.916 0.959
sepsis_f(700) |0.913 0.853 0.870 0.843 0.848 0.858 | 1.000 0.829 0.817 0.928 0.952 0.939
bpic17(700)  |0.887 0.869 0.935 0.909 0.873 0.915 | 0.980 0.957 0.871 0.871 0.937 0.944
helpdesk(700) [0.934 0.951 0.934 0.954 0.963 0.954 | 1.000 0.983 0.980 0.912 0.931 0.968
hb(1000) 0.921 0.883 0.897 0.915 0.841 0.862 | 1.000 0.932 0.862 0.922 0.932 0.918
rtfmp(1000)  [0.907 0.871 0.893 0.912 0.930 0.837 | 1.000 0.945 0.925 0.959 0.930 0.968
sepsis_f(1000) [0.876 0.849 0.892 0.864 0.833 0.827 | 1.000 0.787 0.867 0.909 0.963 0.929
bpic17(1000) ]0.897 0.886 0.924 0.892 0.881 0.937 | 0.982 0.941 0.919 0.903 0.937 0.946

be interesting to initiate research on each of the DL models and fully explore the ar-
chitecture’s potential for process model forecasting. Our research results can be used
as a baseline for such endeavors. For suggestions on hyperparameter selection, un-
fortunately, we could not find any patterns of the optimal hyperparameters and make
a recommendation for their use. As Optuna statistics shows, the best hyperparameter
combinations always vary from dataset to fold, and the selected hyperparameters in our
experiments seem to be reasonable. Yet, it remains open how much of the differences
in the measurements result from choosing the proper configurations and parameters.

The DeePMF comes with several natural limitations. Firstly, for training, it requires
a reliable process discovery algorithm that can best describe the system behavior for a
certain period of time. Secondly, this approach is not able to cater unseen activities
as constructed DFMs used for training also fix the number of the possible forecasted
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activities. Thirdly, it does not guarantee the quality of the forecasted models, where the
best consistency score from NN models is around 0.9.

The improved ranking on finer time windows implies that process model forecasting
on large numbers of time windows is promising. Due to the scope constraints, we did
not fully explore the optimal time span for forecasting accuracy, which is an interesting
direction for future work.

In terms of the training time, despite the DL model training being done with high-
end GPUs, it can still take hours to days to train the most optimal NN model. With finer
time windows, more training samples are available, and one observes improvements in
forecasting accuracy, but it could also take longer to train the model. It is a dilemma
to trade off the forecasting accuracy and the time taken to train an NN model. Note
that it can be impractical to use DeePMF if the time taken to train a forecasting DL
model is the same or even longer as the forecasting horizon. However, if this training
time dilemma is addressed, organizations and process analysts may use the prediction
outcome to help organizational planning such as resource allocation or process model
design in the next BPM cycle.

As another direction for future work, it is interesting to explore the impact of larger
look-back windows and forecasting horizons on forecasting accuracy and consistency.
The DeePMF can either be used recursively to forecast a longer period or adapted to use
DL recurrent architectures for generating forecasts for longer horizons. Our approach
only uses the event log for forecasting. Correlating the event log with other observations
could be worthwhile for many applications, and we leave this as future work.

Finally, it is worth noting the benefits of process model forecasting and its potential
applications. BPM lifecycle comprises five stages, namely, business process (re)design,
implementation, monitoring, adjustment, and diagnosis [25]. It can take at least six
months to over two years for a business model to be implemented and run from its ini-
tial design [3]]. For such an extended period, the process behaviors may evolve, which,
by the time of the implementation and monitoring phases of the lifecycle, could poten-
tially make the following redesign phase obsolete. An accurate process model forecast
can support resource allocation and planning. Additionally, it can provide analysts and
stakeholders with valuable insights into potential process model changes over time.
Finally, by incorporating an early process forecast into the redesign initiative, orga-
nizations can proactively account for anticipated process evolutions, ensuring that the
redesigned process is implemented by the time the forecasted process changes materi-
alize, ultimately facilitating a smoother transition into future business operations.

7 Conclusion

In this paper, we advanced process model forecasting techniques by leveraging deep
neural networks. Our experiments demonstrate that deep neural networks offer greater
potential than traditional statistical models, with the transformer architecture achiev-
ing the highest overall accuracy. To complement this higher accuracy, we introduced a
quality measure to assess the consistency of the predicted process models. We explored
two methods to further improve forecasting accuracy, finding that post-processing the
forecasts can lead to further improvements. By improving forecasting accuracy and
consistency, we aim to provide analysts with more reliable and interpretable results.
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